
Designation: E 2084 – 00 An American National Standard

Standard Specification for
Authentication of Healthcare Information Using Digital
Signatures 1

This standard is issued under the fixed designation E 2084; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers the use of digital signatures to
provide authentication of healthcare information, as described
in Guide E 1762. It describes how the components of a digital
signature system meet the requirements specified in Guide
E 1762. This includes specification of allowable signature and
hash algorithms, management of public and private keys, and
specific formats for keys, certificates, and signed healthcare
documents.

1.2 This specification should be read in conjunction with
Guide E 1762, which describes the scope of, and requirements
for, authentication of healthcare information. This specification
describes one implementation (digital signatures) that meets all
of the requirements of Guide E 1762. It does not prescribe any
particular policy regarding which documents shall be authen-
ticated, and by whom.

2. Referenced Documents

2.1 ASTM Standards:
E 1762 Guide for Electronic Authentication of Healthcare

Information2

2.2 ANSI Standards:3

X9.30 Part 2: Public Key Cryptography Using Irreversible
Algorithms: Secure Hash Algorithm (SHA-1)

X9.31 Reversible Digital Signature Algorithms
X9.55 Extensions to Public Key Certificates and CRLs
X9.57 Certificate Management
X9.62 Elliptic Curve Digital Signature Algorithm
2.3 ISO Standards:4

ISO 9594–8 1993: The Directory: Authentication Frame-
work (also available as ITU-S X.509)

ISO 8824–1 1993: Specification of Abstract Syntax Nota-
tion One (ASN.1)

ISO 8825–1 1993: Specification of Basic Encoding Rules
for ASN.1

ISO 9796 1991: Digital Signature Scheme Giving Message
Recovery

ISO 10166 1991: Document Filing and Retrieval (DFR)
2.4 Internet Standards:5

RFC 2630 Cryptographic Message Syntax
2.5 Other Documents:6

RSA Laboratories, “PKCS #1: RSA Encryption Standard
(version 1.5),” November 1993

RSA Laboratories, “PKCS #5: Password Based Encryption
(version 1.5),” November 1993

RSA Laboratories, PKCS #6: Extended Certificate Syntax
Notation

RSA Laboratories, “PKCS #7: Cryptographic Message Syn-
tax (version 1.5),” November 1993

RSA Laboratories, PKCS #9: Selected Attribute Types
ITU-T X.501 Information Technology Open Systems

Interconnection—The Directory: Models

3. Terminology

3.1 Definitions:
3.1.1 attribute—piece of information associated with the

use of a document.
3.1.2 authentication (data origin)—corroboration that this

source of data received is as claimed.
3.1.3 authentication (user)—provision of assurance of the

claimed identity of an entity.
3.1.4 certificate (public key)—digitally signed data structure

that binds a user’s identity to a public key.
3.1.5 data integrity—property that data has not been altered

or destroyed in an unauthorized manner.
3.1.6 digest—result of applying a one-way hash function to

a message.
3.1.7 digital signature—data associated with, or a crypto-

graphic transformation of, a data unit that allows a recipient of
the data unit to prove the source and integrity of the data unit
and protect against forgery, for example, by the recipient.

1 This specification is under the jurisdiction of ASTM Committee E31 on
Healthcare Informatics and is the direct responsibility of Subcommittee E31.20 on
Data and System Security for Health Information.

Current edition approved April 10, 2000. Published June 2000.
2 Annual Book of ASTM Standards,Vol 14.01.
3 Available from American National Standards Institute, 11 W. 42nd St., 13th

Floor, New York, NY 10036.
4 Available from ISO, 1 Rue de Varembe, Case Postale 56, CH 1211, Geneve,

Switzerland.

5 Available at http://www.ietf.org.
6 Available from RSA Data Security, 100 Marine Parkway, Redwood City, CA

94605.

1

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

3.1.8 document access time—time(s) when the subject
document was accessed for reading, writing, or editing.

3.1.9 document attribute—attribute describing a character-
istic of a document. E 1762

3.1.10 document creation time—time of the creation of the
subject document E 1762

3.1.11 document editing time—time(s) of the editing of the
subject document. E 1762

3.1.12 electronic document—defined set of digital informa-
tion, the minimal unit of information which may be digitally
signed. E 1762

3.1.13 event time—the time of the documented event.
3.1.14 (one-way) hash function—function which maps

strings of bits to fixed-length strings of bits, satisfying the
following two properties:(1) it is computationally infeasible to
find for a given output an input which maps to this output;(2)
it is computationally infeasible to find for a given input a
second input which maps to the same output.

3.1.15 private key—key in an asymmetric algorithm; the
possession of this key is restricted, usually to one entity.

3.1.16 public key—key in an asymmetric algorithm that is
publicly available.

3.1.17 repudiation—denial by one of the entities involved
in a communication of having participated in all or part of the
communication.

3.1.18 role—role of a user when performing a signature.
Examples include: physician, nurse, allied health professional,
transcriptionist/recorder, and others. E 1762

3.1.19 signature attribute—attribute characterizing a given
user’s signature on a document E 1762

3.1.20 signature purpose—indication of the reason an entity
signs a document. This is included in the signed information
and can be used when determining accountability for various
actions concerning the document. Examples include: author,
transcriptionist/recorder, and witness. E 1762

3.1.21 signature time—time a particular signature was gen-
erated and affixed to a document. E 1762

3.1.22 signature verification—process by which the recipi-
ent of a document determines that the document has not been
altered and that the signature was affixed by the claimed signer.
This will in general make use of the document, the signature,
and other information such as cryptographic keys or biometric
templates.

3.2 Acronyms: Acronyms:
3.2.1 ABA—American Bar Association
3.2.2 ASC X9—Accredited Standards Committee X9
3.2.3 CA—Certificate Authority
3.2.4 CEN—Comité Européan de Normalisation (European

Standards Committee)
3.2.5 CRL—Certificate Revocation List
3.2.6 DSA—Digital Signature Algorithm
3.2.7 ISO—International Standards Organization
3.2.8 NIST—National Institute for Standards and Technol-

ogy
3.2.9 RSA—Rivest, Shamir, and Adleman

4. Technology Overview

4.1 Digital signatures are a cryptographic technique in
which each user is associated with a pair of keys. The private

key is kept secret, while the public key is distributed to the
potential verifiers of the user’s digital signature. To sign a
document, the document and private key are input to a
cryptographic process which outputs a bit string (the signa-
ture). To verify a signature, the signature, the document, and
the user’s public key are input to a cryptographic process,
which returns an indication of success or failure. Any modifi-
cation to the document after it is signed will cause the signature
verification to fail (integrity). If the signature was computed
using a private key other than the one corresponding to the
public key used for verification, the verification will fail
(authentication).

4.2 A digital signature is thus a piece of data associated with
a document which allows the recipient to prove the origin of
the document and to protect against forgery. Digital signatures
are formed using asymmetric encryption algorithms as de-
scribed in 4.1. Digital signatures are associated with a docu-
ment.

4.3 To sign a message, it is first hashed into a single block
using a one-way hash function. A one-way hash function has
the property that, given the digest (the output of the hash
function), it is computationally infeasible to construct any
message that hashes to that value, or to find two messages that
hash to the same digest. The digest is processed with the user’s
private key, and the result may be appended to the message as
its signature.

4.4 Separating the signature from the message reduces the
amount of data to be encrypted to a single block. This is
important since public key algorithms are generally substan-
tially slower than symmetric algorithms. The signature process
also introduces redundancy into the message. Redundancy
allows the recipient to detect unauthorized changes to the
message. Most messages already contain sufficient redundancy
to detect such a forgery (such as, English text, time stamps,
etc.). The signature process adds additional redundancy, since
the message must also hash to the specified digest.

4.5 To verify a signature, the received message is digested,
and the digest is processed along with the public key and
signature. The result is an indication of success or failure of the
verification.

4.6 A digital signature provides the following security
services:

4.6.1 Integrity, since any modification of the data being
signed will result in a different digest, and thus a different
signature.

4.6.2 Origin authentication, since only the holder of the
private key corresponding to the public key used for validation
could have signed the message.

4.6.3 Support for non-repudiation, that is, irrevocable proof
to a third party that only the signer could have created the
signature.

4.7 A canonical representation for documents shall be speci-
fied for use by cryptographic mechanisms described in this
specification. In general, a document may be stored on a
system in a different form than the one in which it was
generated. For example, if the document contains many nu-
meric values, some systems may store them as integers but

E 2084 – 00

2

others as text. Since signatures are computed over representa-
tions (encodings), rather than abstract values, there shall be a
specific representation the signature is computed over. Such a
representation can be defined using Abstract Syntax Notation
One (ASN.1) (ISO 8824–1) with an appropriate set of encod-
ing rules, such as the Distinguished Encoding Rules specified
in ISO 8825–1. As an added benefit, a number of existing ISO
and ANSI standards (notably X.509 and ANSI X9.57) are
available that define ASN.1 structures for digital signatures.
These are presented in Section 9. The sender and recipient shall
agree on an encoding mechanism for the (signed) document.
Other mutually agreed or standard or standard encoding
mechanisms may be used. If ASN.1 encoding is used, then the
specification in Section 9 shall be used. This document
representation is taken from ISO 10166.

4.8 A document may be signed by one or more users. Each
user’s signature and other information is contained in a
separate structure. Each signature structure contains an indica-
tion of the public key needed to validate the signature and a bit
string containing the actual signature. Additionally, other
information relevant to the particular signer would be included
in an individual signature computation. This per-signer infor-
mation would be included in the signature computation as
signature attributes. A signature structure may also include
per-signer information which is not signed, but merely ap-
pended to the signature structure (unsigned attributes). An
important unsigned attribute is thecountersignature. A coun-
tersignature is a signature on the signature structure in which it
is found, rather than on the document itself. A countersignature
thus provides proof of the order in which signatures were
applied. Since the countersignature is itself a signature struc-
ture, it may itself contain countersignatures; this allows con-
struction of arbitrarily long chains of countersignatures.

5. Mapping to Requirements

5.1 This section maps the algorithms, procedures, and data
formats described in Sections 6-9 to the electronic signature
requirements presented in Guide E 1762.

5.2 General Requirements:
5.2.1 Non-repudiation—This is provided by a digital signa-

ture, assuming the private key used for signing is never
divulged (see Section 7). Additionally, reliable binding of keys
to names shall be provided, using certificates. Appropriate
secure archive facilities shall be provided for expired and
revoked keys and certificates, as well as CRLs. This might be
done by using the new private key to sign the old public key in
a certificate.

5.2.2 Integrity—This is provided by a digital signature,
since any modification of the signed document or signature
causes signature verification to fail.

5.3 User Authentication Requirements:
5.3.1 Secure User Authentication—This shall be provided

by the system implementing digital signature. Secure user
authentication is the topic of several standards currently under
development by ASTM Committee E31.

5.4 Logical Manifestation Requirements:

5.4.1 Multiple Signatures—These are provided, on a docu-
ment by theSignerInfo structures described in Section 9.
Additionally, a given signature may have multiple countersig-
natures.

5.4.2 Signature Attributes—These are provided in theSign-
erInfo structure as theauthenticatedAttributes component.

5.4.3 Countersignatures—These are provided using the
countersignature unsigned attribute.

5.5 Verification Requirements:
5.5.1 Transportability—The ASN.1 specification in Section

9 defines a unique encoding for the signed document, which
can be transported to another system for verification.

5.5.2 Interoperability—Any recipient which implements the
ASN.1 specification of Section 9 and the appropriate signature
algorithms can verify a signed document.

5.5.3 Independent Verifiability—A digital signature is veri-
fied using the public key of the signer, which can be certified
by a trusted third party (CA) and distributed via a variety of
mechanisms.

5.5.4 Continuity of Signature Capability—Publication of
the public key used for signature verification does not allow an
adversary to determine the private key used for signature.

6. Algorithms

6.1 While it is not the intent of this specification to restrict
the use of cryptographically sound signature algorithms, it is
desirable to limit the number of allowable algorithms, to ensure
interoperability. This specification recommends use of the
following algorithms:

6.1.1 RSA and variants, as described in ANSI X9.31, PKCS
#1, andAppendix X1, or

6.1.2 DSA and variants, as described in ANSI X9.30, ANSI
X9.62, andAppendix X2.

6.2 Allowable hash algorithms for use with the signature
algorithms include:

6.2.1 For RSA and variants, SHA-1.
6.2.2 For DSA and variants, SHA-1.

7. Public Key Management

7.1 To verify a signature, a user shall obtain the signer’s
public key from a source that he or she trusts. This source is a
public key certificate, which binds a user’s name to his public
key. Certificates are signed by a trusted issuer, the Certification
Authority (CA). Besides the user’s name and public key, the
certificate contains the issuing CA’s name, a serial number, and
a validity period. The format of a certificate is specified in
ISO 9594–8 and in ANSI X9.57. Section 9 of this specification
describes this format in more detail.

7.2 Although this specification does not impose any particu-
lar structure on the CAs, many implementations find it reason-
able to impose a hierarchical structure. A hierarchy of CAs can
be set up, where the higher level CAs sign the certificates of the
CAs beneath them, etc. The lowest level of CAs sign user
certificates. At the top of this hierarchy are relatively few CAs
(perhaps one per country) who may “cross-certify” each
other’s public keys.

7.3 Various security architectures define mechanisms to
construct a certification path through the hierarchy to obtain a
given user’s certificate and all CA certificates necessary to

E 2084 – 00

3

validate it. These architectures share the common characteris-
tics that a user need only trust one other public key in order to
obtain and validate any other certificate. The trusted key may
be that of the top-level CA (in a centralized trust model), or the
local CA that issued the user’s certificate (in a decentralized
model). Since there will be a variety of entities offering
certification services (ranging from commercial entities to the
U.S. government), implementations may find it useful to
accommodate multiple trusted public keys, in the absence of
cross-certification between all of these services.

7.4 Certificates contain an expiration date. If it is necessary
to cancel a certificate prior to its expiration date (for example,
if the name association becomes invalid or the corresponding
private key is lost or compromised), the certificate may be
added to the CA’s certificate revocation list (CRL). This list is
signed by the CA and widely distributed (for example, as part
of the CA’s directory entry). Each entry contains the revoked
certificate’s serial number, a revocation time, and optionally a
revocation reason and time of suspected compromise. The
certificate remains on the CRL until its expiration date. A
system will typically archive expired certificates and CRLs in
order to be able to verify signatures after the fact. Such
archives shall be protected from modification, perhaps by using
write-once media such as optical disk, or by digitally signing
the archive files. In the latter case, the files may periodically
need to be re-signed as the certificates needed to verify the
signatures expire.

7.5 Certificates and CRLs for use with this specification are
defined in ANSI X9.57 and ANSI X9.55. The relevant ASN.1
specification can be found in Section 9.

8. Private Key Management

8.1 To support a non-repudiation service, the user’s private
key shall be protected from disclosure to other users. This
ensures that only that user could have created a digital
signature using the private key; therefore the user cannot
repudiate a signature by claiming that someone else applied it.

8.2 The most secure way to protect the private key is to
embed it in a tamperproof cryptographic module that will
perform the signature computation internally. Such modules
might include smart cards, cryptographic diskettes, and PCM-
CIA cards. Access to the signature function requires the user to
authenticate himself to the module using passwords, PINs, or
biometric controls (even including graphic signature verifica-
tion), or a combination thereof. This approach is recommended
by this specification.

8.3 A less secure way to protect the private key is to encrypt
it under a secret key computed from a password entered by the
user. The minimum allowable key length for such a secret key
is 56 bits (the key length for the Data Encryption Standard).
Use of the password also authenticates the user to the signing
system. (One such mechanism is described in PKCS #5.) The
encrypted private key may be stored on removable media like
a floppy disk and decrypted when needed to perform a
signature. This approach is acceptable, but not recommended
by this specification.

9. ASN.1 Specification

9.1 Following is the ASN.1 specification for the data struc-
tures defined in this specification. Complete specifications for
ASN.1 can be found in ISO 8824–1 and 8825–1.

9.2 Document Structure and Attributes:
9.2.1 A document is represented using the following ASN.1

type. This representation is only required when computing or
verifying a signature on the document, and places no con-
straints on how the document is represented during transmis-
sion or storage (although ASN.1 might also be appropriate for
these purposes). Attributes may be specified, if desired, using
the ATTRIBUTE class that follows, or that in ITU-T X.501.
Document::= SEQUENCE {

attributes SET OF Attribute,
content CHOICE {

digest DigestedDocument,
full OCTET STRING }}

Attribute ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
values SET OF ATTRIBUTE.&Syntax ({SupportedAttributes} {@type}) }

ATTRIBUTE CLASS:: = {
&Syntax,
&singleValued BOOLEAN DEFAULT FALSE,
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX {

WITH ATTRIBUTE SYNTAX&Syntax

ID &id
}
DigestedDocument::= SEQUENCE {

algorithm Algorithmidentifier,
}
DigestedDocument::= SEQUENCE {

algorithm Algorithmidentifier,
digest OCTET STRING,
locator DocumentLocator OPTIONAL}

DocumentLocator ::= CHOICE {
uri IA5String,
dfr DFRName, –using (uri (attribute
oid OBJECT IDENTIFIER,
other INSTANCE OF OTHER-LOCATOR }

DFRName ::= SEQUENCE { –OSI Document Filing/Retrieval ID
docStore AETitle,
upi OCTET STRING }

AETitle ::= CHOICE { –OSI application name/address
nameForm Name, – last RDN is (qualifier (

oidForm SEQUENCE {
title OBJECT IDENTIFIER,
qualifier INTEGER }}

OTHER-LOCATOR ::= TYPE-IDENTIFIER

9.2.2 This structure specifies the physical representation of
a document when presented to the authorization mechanism.
This does not imply that the document shall be stored,
transmitted, or otherwise manipulated using this representation
at any time other than authorization processing. However, it
may be efficient to store the attributes and digest as an ASN.1
encoded structure.

9.2.3 The digest alternative contains the document at-
tributes and the digest of the document, along with an optional
document locator. Thefull alternative contains the actual
document content, as an OCTET STRING.

E 2084 – 00

4

9.2.4 A document locator is used to access the full content
of a document. Alternatives include:

9.2.4.1 Uniform Resource Identifier (URI), which can be
used to access the document via Internet protocols such as
HTTP, FTP, and gopher.

9.2.4.2 Document Reference, for the OSI Document Filing
and Retrieval (DFR) protocol ISO 10166. A reference consists
of the application name and address of the document store and
a unique permanent identifier for the document.

9.2.4.3 OBJECT IDENTIFIER, the application shall have a
prior knowledge of the address where the document can be
found.

9.2.4.4 Custom Identifiers, defined by an application
(TYPE-IDENTIFIERs).

9.2.5 All documents include at least the document type
attribute, which indicates the type and semantics of the
document.

9.2.6 The document attributes defined in Guide E 1762 are
defined as follows:
document-type ATTRIBUTE ::= {

WITH ATTRIBUTE-SYNTAX DocumentType
ID id-transaction-type }

DocumentType ::= OBJECT IDENTIFIER
location ATTRIBUTE ::= {

WITH ATTRIBUTE-SYNTAX Location
ID id-location }

Location ::= CHOICE {
PresentationAddress,
IPAddress
X121Address,
FreeFormAddress }

PresentationAddress ::= SEQUENCE { —for OSI applications
pSelector [0] OCTET STRING OPTIONAL,
sSelector [1] OCTET STRING OPTIONAL,
tSelector [2] OCTET SPRING OPTIONAL,
nAddress [3] SEQUENCE OF OCTET STRING }

IPAddress ::= OCTET STRING for Internet, etc.

X121Address ::= NumericString (SIZE (1..15)) –X2.5

FreeFormAddress ::= OCTET STRING

patient-id ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX GeneralName
ID id-patient-id }

event-id ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
ID id-event-id }

amendment-to ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX DigestedDocument
ID id-amendment-to }

data-type ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
ID id-data-type }

data-format ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
ID id-data-format }

originating-organization ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX GeneralName,
ID id-orig-org }

event-time ATTRIBUTE ::= {

WITH ATTRIBUTE-SYNTAX GeneralizedTime,
ID id-event-time }

doc-creation-time ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX GeneralizedTime,
ID id-creation-time }

doc-modification-time ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX GeneralizedTime,
ID id-modif-time }

doc-access-time ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX GeneralizedTime,
ID id-access-time }

doc-identifier ATTRIBUTE ::= {
WITH ATTRIBUTE-SYNTAX OCTET STRING,
ID id-doc-identifier }

9.3 Digital Signatures and Certificates:
9.3.1 This section defines parameterized types used to

construct digital signatures on arbitrary data types. These
include public key formats (which are encapsulated in BIT
STRINGs for transmittal), algorithm parameters, and signature
formats (also encapsulated in BIT STRINGS).
AlgorithmIdentifier ::= SEQUENCE{

algorithm ALGORITHM.&id ({SupportedAlgorithms}),
parameters
ALGORITHM.&Type ({SupportedAlgorithms} {@algorithm})

OPTIONAL }

SupportedAlgorithms ALGORITHM ::= {dsa ? dsa-with-sha-1 ? rsa-signature
? rsa-signature-with–sha–1 ? rsaEncryption ? rsaEncryptionWithSHA1 ? ec-
PublicKeyAlgorithm ? ecdsa–with-SHA1}

ALGORITHM :: = TYPE-IDENTIFIER

DSAPublicKey :: = INTEGER

DSAParameters ::= SEQUENCE {
– length of p in bits

prime1 INTEGER, – modulus p
prime2 INTEGER, – modulus q
base INTEGER } – base g

RSAPublicKey ::= SEQUENCE {
modulus INTEGER
exponent INTEGER }

HASHED (ToBeHashed} ::= OCTET STRING (CONSTRAINED BY {
–must be the result of applying a hashing procedure to the
–DER-encoded octets of a value of

ToBeHashed }

ENCRYPTED {ToBeEnciphered} ::= BIT STRING (CONSTRAINED BY {
–must be the result of applying an enciphered procedure to the
–DER-encoded octets of a value of

ToBeEnciphered }

SIGNED {ToBeSigned}::=SEQUENCE {
date ToBeSigned,

signature COMPONENTS OF SIGNATURE {ToBeSigned} }

SIGNATURE {OfSignature} ::=SEQUENCE {
algorithm Algorithmidentifier,
encryptedDigest ENCRYPTED {HASHED {OfSignature}}}

RSASignature ::= INTEGER

DSASignature ::= SEQUENCE { – for DSA and its variants
r INTEGER,
s INTEGER }

9.3.2 This section defines a data structure that contains an
item (document) and one or more signatures on the item. This

E 2084 – 00

5

structure contains the item and one or more signature struc-
tures. Each signature structure contains the signer’s identifier,
and indication of the signature algorithm, the digest of the
document, and a set of attributes to be included in the signature
computation (the signature attributes). All of these items are
included in the signature computation. Additionally, one or
more unsigned attributes (countersignatures) may be included.

9.3.3 The document being signed may be included in the
SignedDatastructure that follows, in theContentInfo field.
Alternatively, the content may be stored separately, in which
case theSignedDatastructure contains only the signatures and
other relevant cryptographic information. This structure is
taken from RFC 2630, which is in turn derived from PKCS #7.
This specification places constraints on some of the fields in the
CMS data structures.
SignedData ::= SEQUENCE {

version INTEGER { v1(1), v2(2), v3(3) },
digestAlgorithms SET OF AlgorithmIdentifier,
contentinfo Contentinfo,
certificates IMPLICIT Certificate Set OPTIONAL,
crls [1] IMPLICIT CertificateRevocationLists

OPTIONAL,
signatures SEQUENCE OF Signerinfo }

ContentInfo :: = INSTANCE OF CONTENT-INFO ({SupportedContentTypes})

CONTENT-INFO ::= TYPE-IDENTIFIER

data CONTENT-TYPE ::= {OCTET STRING IDENTIFIED BY id-data }
signedData CONTENT-TYPE ::= { SignedData IDENTIFIED BY id-
signedData }

Certificate Set ::= SET OF CertificateChoice
(WITH COMPONENTS {extendedCertABSENT, ... })

CertificateChoice ::= CHOICE {
certificate Certificate –see below
extendedCert [0] ExtendedCertificate, – obsolete
attributeCert [1] AttributeCertificate } – from X.509

9.3.4 The fields of typeSignedData have the following
meanings:

9.3.4.1 version is the syntax version number. It shall be 3 if
attribute certificates are present, and 1 otherwise.

9.3.4.2 digestAlgorithms is a collection of message-digest
algorithm identifiers. They may be any number of elements in
the collection, not including zero. Each element identifies the
message-digest algorithm (and any associated parameters)
under which the content is digested for a signer. The collection
is intended to list the message-digest algorithms employed by
all of the signers, in any order, to facilitate one-pass signature
verification. The message-digesting process is described 9.3.8.

9.3.4.3 contentInfo is the content that is signed. It can have
any of the defined content types.

9.3.4.4 certificates is a set of X.509 public key and (option-
ally) attribute certificates. It is intended that the set be sufficient
to contain public key certificate chains from a recognized
“root” or “top-level certification authority” to all of the signers
in the signerInfos field. There may be more certificates than
necessary, and there may be certificates sufficient to contain
chains from two or more independent top-level certification
authorities. There may also be fewer certificates than neces-
sary, if it is expected that those verifying the signatures have an
alternate means of obtaining necessary certificates (for ex-
ample, from a previous set of certificates). Note that PKCS #6

extended certificates shall not be used; equivalent functionality
can be obtained using certificate extensions as discussed in
9.3.13.10. Attribute certificates may also be present to convey
additional user privileges, but this version of this specification
does not define any such privileges.

9.3.4.5 crls is a set of certificate-revocation lists. It is
intended that the set contain information sufficient to determine
whether or not the certificates in the certificates field are “hot
listed,” but such correspondence is not necessary. There may
be more certificate-revocation lists than necessary, and there
may also be fewer certificate-revocation lists than necessary.

9.3.4.6 signerInfos is a collection of per-signer information.
There may be any number of elements in the collection,
including zero.

9.3.5 Per-signer information is represented in the type
SignerInfo:
SignerInfo ::= SEQUENCE {

version INTEGER { v1(1) },
signer IssuerSerial,
digestAlgorithm AlgorithmIdentifier,
signedAttributes SET OF Attribute,
signatureAlgorithm AlgorithmIdentifier,
signature OCTET STRING,
unsignedAttributes SET OF Attribute }

IssuerSerial ::= SEQUENCE {
issuer Name,
serial CertificateSerialNumber }

9.3.6 The fields of typeSignerInfo have the following
meanings:

9.3.6.1 version is the syntax version number. It shall be 2
for this version of this specification.

9.3.6.2 issuerSerial specifies the signer’s certificate (and
thereby the signer’s distinguished name and public key) by
issuer distinguished name and issuer-specific serial number.
This can be used to locate the certificate within thecertificates
field of the enclosingSignedDatastructure.

9.3.6.3 digestAlgorithm identifies the message-digest algo-
rithm (and any associated parameters) under which the content
and signed attributes (if present) are digested. It should be
among those in thedigestAlgorithms field of the enclosing
SignedDatavalue. The message-digesting process is described
in 9.3.8 and 9.3.9.

9.3.6.4 signedAttributes is a set of attributes that are signed
(authenticated) by the signer. The field is optional, but it shall
be present if the content type of theContentInfo value being
signed is notdata. If the field is present, it shall contain, at a
minimum, two attributes: (1) A content-type attribute having as
its value the content type of theContentInfo value being
signed. (2) A message-digest attribute, having as its value the
message digest of the content (see 9.3.8 and 9.3.9). Other
signature attribute types that might be useful here are also
defined in PKCS #9.

9.3.6.5 signatureAlgorithm identifies the signature (and
any associated parameters) under which the message digest and
associated information are signed with the signer’s private key.
The signature process is described in 9.3.8.

9.3.6.6 signature is the result of signing the message digest
and associated information with the signer’s private key.

E 2084 – 00

6

9.3.6.7 unsignedAttributes is a set of attributes that are not
signed (authenticated) by the signer. The field is optional. The
only currently defined unsigned attribute is thecountersigna-
ture attribute.

9.3.7 The signing process is composed of two functions:
message-digesting and the actual signature function.

9.3.8 The message-digesting process computes a message
digest on either the content being signed or the content together
with the signer’s signature attributes. In either case, the initial
input to the message-digesting process is the “value” of the
content being signed. Specifically, the initial input is the
contents octets of the DEF encoding of the content field of the
ContentInfo value to which the signing process is applied.
Only the contents octets of the DER encoding of that field are
digested, not the identifier octets or the length octets.

9.3.9 The result of the message-digesting process (which is
informally called the “message digest”) depends on whether
thesignedAttributes field is present. When the field is absent,
the result is just the message digest of the content. When the
field is present, however, the result is the message digest of the
complete DER encoding of theAttributes value contained in
thesignedAttributes field. (For clarity: The IMPLICIT [0] tag
in the signedAttributes field is not part of theAttributes
value. TheAttributes value’s tag is SET OF, and the DER
encoding of the SET OF tag, rather than the IMPLICIT [0] tag,
is to be digested along with the length and contents octets of
the Attributes value. Since theAttributes value, the field is
present, must contain as attributes the content type and the
message digest of the content, those values are indirectly
included in the result.

9.3.10 When the content being signed has content typedata
and thesignedAttributes field is absent, then just the value of
the data (the contents of a file) is digested. This has the
advantage that the length of the content being signed need not
be known in advance of the encryption process.

9.3.11 The input to the signature generation process in-
cludes the result of the message digest calculation process and
the signer’s private key. The details of the signature generation
depend on the signature algorithm employed. The object
identifier, along with any parameters, that specifies the signa-
ture algorithm employed by the signer is carried in the
signatureAlgorithm field. The signature value generated by
the signer is encoded as an OCTET STRING and carried in the
signature field.

9.3.12 This section defines the contents of public key
certificates and certificate revocation lists (CRLs).
CertificateInfo ::= SEQUENCE {

version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature Algorithmidentifier,
issuer Name, – CA’s name
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,
subjectUniqueID [2] IMPLICIT Uniqueldentifier OPTIONAL,
extensions Extensions OPTIONAL }

Certificate ::= SIGNED {CertificateInfo}

Version ::= INTEGER { v1(0), v2(1), v3(2) }

Name ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::= SET OF AttributeValueAssertion

AttributeValue Assertion ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRTIBUTE.&Syntax ({SupportedAttributes} {@type}) }

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
entityPublicKey BIT STRING }

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime

CertificateSerialNumber ::= INTEGER

Extensions ::= SET OF Extension

Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),

critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRIN G } – Contains a
–canonical encoding of a value of type &ExtnType for the
–extension object identified by extnId –

EXTENSION :: = CLASS
{

&id OBJECT IDENTIFIER UNIQUE,
&ExtnType
}
WITH SYNTAX
{
SYNTAX &ExtnType
IDENTIFIED BY &id
}

9.3.13 The certificate fields have the following meanings:
9.3.13.1version is used to differentiate between versions of

the certificate. Version 3 shall be used for this version of this
specification.

9.3.13.2serialNumber field uniquely identifies this certifi-
cate among all those issued by the same CA. TheserialNum-
ber shall never repeat for a given CA. The combination of
issuer name and serial number uniquely identifies a certificate
for purposes such as Certificate Revocation Lists.

9.3.13.3signature identifies the algorithm (combination of
digest and asymmetric signature algorithms) used to sign the
certificate. It is added by the CA when creating the certificate.

9.3.13.4 issuer contains the distinguished name of the CA
and is added by the CA when creating the certificate.

9.3.13.5validity indicates the period during which a public/
private key pair is valid.

9.3.13.6subject is the name of the entity being certified.
Names in certificates are defined as a sequence of components
called relative distinguished names, each of which is an
attribute type and value. The entity that is to be bound to the
public key is contained in thesubject field.

9.3.13.7subjectPublicKeyInfo is the public key of the
subject being certified.

9.3.13.8 issuerUniqueID is an optional field which
uniquely identifies the subject being certified. This field is used
in the case where the issuer name may be reused over time. (At
any single point in time, the issuer name shall be unique, as
discussed in 9.3.13.4. This does not preclude another entity
using the name when the first entity no longer exists.)

E 2084 – 00

7

9.3.13.9 subjectUniqueID is an optional field which
uniquely identifies the subject being certified. This field is used
in the case where the Distinguished Name of a subject may be
reused over time.

9.3.13.10extensionsis an optional field in version 3 cer-
tificates which may contain additional information used during
certificate verification or by applications. A standard set of
generally useful extensions is being defined by ISO and ANSI;
additional extensions may be defined by other groups. Critical
extensions shall be recognized and processed by certificate-
handling systems; unrecognized critical extensions will cause
certificates to be considered invalid (for example, signature
verification using such a certificate will fail). Unrecognized
non-critical extensions may be ignored. The following exten-
sions are useful for healthcare applications; syntax can be
found in ANSI X9.57:

(1) Authority Key Identifier—Identifies CA key used to
sign a certificate.

(2) Subject Key Identifier—Identifies user key used to sign
a document.

(3) Key Usage—Constrains functions a key is used for
(like signature or encryption).

(4) Certificate Policies and Policy Mappings—Allow
domains to support different certification policies (for example,
assurance levels).

(5) Alternative Names—Allows identification of issuer and
subject by other name forms, such as e-mail addresses.

(6) Constraints—Allows a CA to constrain the length of a
certification path, the namespace subordinate CAs may certify,
and which policies may be present in a certification path.

9.3.14 This section defines the contents of certificate revo-
cation lists (CRLs).
CertificateRevocationList ::= SIGNED {CRLInfo}

CRLInfo::=SEQUENCE {
version INTEGER OPTIONAL,
– only present if there are critical extensions
signature AlgorithmIdentifier,
issuer Name,
issuerUID [0] UniqueIdentifier OPTIONAL,
lastUpdate UTCTime,
nextUpdate UTC Time OPTIONAL,
revokedCertificates SEQUENCE OF CRLEntry DEFAULT {},
extensions[1] Extensions OPTIONAL }

CRLEntry ::- SEQUENCE {
certificate CertificateSerialNumber,
revocationDate UTCTime,
extensions Extensions OPTIONAL }

9.3.15 The CRL fields have the following meanings:
9.3.15.1version is used to differentiate between versions of

the CRL. For compatibility with earlier versions of the CRL,
this field is only present if critical extensions are present in the
CRL. Version 2 is recommended, but not required, for use with
this specification.

9.3.15.2signature identifies the algorithm (combination of
digest and asymmetric signature algorithms) used to sign the
certificate. It is added by the CA when creating the certificate.

9.3.15.3 issuer contains the distinguished name of the CA
issuing the CRL.

9.3.15.4 issuerUniqueID is an optional field which
uniquely identifies the issuer. This field is used in the case
where the issuer name may be reused over time.

9.3.15.5 lastUpdate indicates the date and time this CRL
was issued by the CA.

9.3.15.6nextUpdate indicates the date and time the next
scheduled CRL will be issued. Note this does not preclude the
CA from issuing CRLs prior to that time, if security policy so
dictates.

9.3.15.7 revokedCertificatesis a list of the revoked certifi-
cates, each element of which is aCRLEntry . Revoked
certificates remain on the CRL till they expire.

9.3.15.8extensionscontain optional additional information
associated with the CRL. The following extensions are useful
to partition CRLs into more manageable sizes:

(1) CRL Number—a serial number for CRLs, to detect the
need to retrieve missing CRLs.

(2) Issuing Distribution Point—Allows CRLs to be parti-
tioned by revocation reason. A certificate extension indicating
the distribution point(s) for each certificate is also defined.

(3) Delta CRL Indicator—Indicates the CRL contains only
updates since the reference base URL.

9.3.16 The CRL entry fields have the following meanings:
9.3.16.1certificate contains the serial number of the re-

voked certificate.
9.3.16.2 revocationDate contains the date and time the

certificate was revoked.
9.3.16.3extensionscontains optional additional informa-

tion associated with this particular revoked certificate. Useful
extensions include:

(1) Revocation Reasons—Some reasons, such as key com-
promise, require different handling than other reasons;

(2) Invalidity Date—Date prior to which the key was not
compromised. This allows verification of signatures created
before this date, even after the certificate is revoked.

9.4 Signature Attributes:
9.4.1 This section specifies the signature attributes defined

in Guide E 1762.
signature-purpose ATTRIBUTE ::= {

WITH ATTRIBUTE SYNTAX signaturePurpose
SINGLE VALUE TRUE
ID id-signature-purpose }

SignaturePurpose ::= OBJECT IDENTIFIER

–OIDs for the purposes defined in E 1762; see Annex A1 for values
id-purpose-author
id-purpose-co-author
id-purpose-co-participant
id-purpose-transcriptionist
id-purpose-verification
id-purpose-validation
id-purpose-consent

E 2084 – 00

8

ANNEX

(Mandatory Information)

A1. OBJECT IDENTIFIERS

A1.1 This annex defines the object identifiers used for the
attributes and document types defined in this specification.

–roots for OIDs
pkcs-9 OBJECT IDENTIFIER ::=

{ iso(1) member-body(2) US(840)rsadsi)(113549) pkcs(1) 9 }
attribute OBJECT IDENTIFIER ::=

{ iso(1) identified-organization(3) oiw(14) secsig(3) attribute(4) }

–new OIDs are registered under the E31.20 arc
e31-20 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10065 }
ps100 OBJECT IDENTIFIER ::= { e31-20 1 }
docattr OBJECT IDENTIFIER ::= { ps100 10 }
sigattr OBJECT IDENTIFIER ::= { ps100 11 }
sigpurpose OBJECT IDENTIFIER ::= { ps100 12 }
datatype OBJECT IDENTIFIER ::= { ps100 13 }
format OBJECT IDENTIFIER ::= { ps100 14 }

ID ::= OBJECT IDENTIFIER

–document attributes
id-transaction-type ID ::= { attribute 9 }
id-location ID ::= { attribute 10 }
id-amendment-to ID ::= { docattr 1 }
id-patient-id ID ::= { docattr 2 }
id-event-id ID ::= {docattr 3 }
id-data-type ID ::= { docattr 4 }
id-data-format ID ::= { docattr 5 }
id-orig-org ID ::= { docattr 6 }
id-event-time ID ::= { docattr 7 }
id-creation-time ID ::= { docattr 8 }
id-motif-time ID ::= { docattr 9 }
id-access-time ID ::= { docattr 10 }
id-doc-identifier ID ::= { docattr 11 }

–Attributes required for SignedData
content-type ::= {OBJECT IDENTIFIER IDENTIFIED BY id-content-type }
message-digest ::= { OCTET STRING IDENTIFIED BY id-message-digest }
id-content-type ::= { pkcs-9 3 }
id-message-digest ::= { pkcs-9 4 }

–OIDs for content types
pkcs-7 OBJECT IDENTIFIER ::=

{ iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 7 }
id-date OBJECT IDENTIFIER ::= { pkcs-7 1}
id-signedData OBJECT IDENTIFIER ::= { pkcs-7 2 }

–OIDs for signature attributes and unsigned attributes
id-signature-purpose ID ::= { sigattr 1 }
id-signing-time ID ::= { sigattr 2 }
id-biometric-info ID ::= { sigattr 3 }
id-signature-reason ID ::= { sigattr 4 }
id-machine-id ID ::= { sigattr 5 }
id-annotation ID ::= { sigattr 6 }
id-countersignature ID := { pkcs-9 6 }

–signature purposes
id-purpose-author ID ::= { sigpurpose 1 }
id-purpose-co-author ID ::= { sigpurpose 2 }
id-purpose-co-participated ::= { sigpurpose 3 }
id-purpose-transcriptionist ::= { sigpurpose 4 }
id-purpose-verification ::= { sigpurpose 5 }
id-purpose-validation ::= { sigpurpose 6 }
id-purpose-consent ::= { sigpurpose 7 }

E 2084 – 00

9

id-purpose-witness ::= { sigpurpose 8 }
id-purpose-event-witness ::= { sigpurpose 9 }
id-purpose-identity-witness ::= { sigpurpose 10 }
id-purpose-consent-witness ::= { sigpurpose 11 }
id-purpose-interpreter ::= { sigpurpose 12 }
id-purpose-review ::= { sigpurpose 13 }
id-purpose-source ::= { sigpurpose 14 }
id-purpose-addendum ::= { sigpurpose 15 }
id-purpose-administrative ::= { sigpurpose 16 }
id-purpose-timestamp ::= { sigpurpose 17}

APPENDIXES

(Nonmandatory Information)

X1. RSA AND RELATED SIGNATURE ALGORITHMS

X1.1 This appendix describes the RSA signature algorithm
and its variants. It recommends particular variants for particu-
lar uses.

X1.2 RSA is based on the difficulty of factoring large
numbers. A user generates a public/private key pair as follows:

X1.2.1 Choose two large primes,p andq. They should be
the same length, between 384 and 1024 bits.

X1.2.2 Choose an odd exponente, which is relatively prime
to (p-1)(q-1).

X1.2.3 Computed = e-1 mod ((p-1)(q-1)).
X1.2.4 The public key is then (e, n), and the private key is

(d, n).

X1.3 To sign a message, it is digested, and the digest is
padded to the size of the modulus. PKCS #1 specifies a simple
padding mechanism, while ISO 9796 and ANSI X9.31 specify
a more complex mechanism. Ifm is the padded digest, the
signature is simply:

s5 md modn (X1.1)

X1.4 To verify the signature, digest the received message,
and compute:

m8 5 se modn (X1.2)

Extract the digest fromm8 (a padded digest) and compare to
the computed digest. The signature is valid if the two digests
are equal.

X1.5 RSA is the most widely deployed digital signature
algorithm. A large number of products are available which
implement the PKCS #1 padding method. There are also some
products supporting ISO 9796-2 and ANSI X9.31 padding.
From a performance point of view, signature verification is
much faster than competing algorithms. RSA is patented in the
United States; its use requires a license.

X1.6 RSA using either PKCS #1 or ISO 9796-2 is recom-
mended for general use, with a modulus length between 1024
and 2048 bits.

X2. DSA AND RELATED SIGNATURE ALGORITHMS

X2.1 This appendix describes the DSA signature algorithm
and its variants. It recommends particular variants for particu-
lar uses. These algorithms are based on the difficulty of
computing discrete logarithms. They are all variants of the
ElGamal algorithm.

X2.2 The ElGamal algorithm uses a common modulusp,
which is a large prime, and a common generatorg between 2
andp-2. Each user chooses a private keyx, and computes her
public keyy asgx mod p.

X2.2.1 To sign a message, its digestm is computed, a
random numberk between 2 andp-2 is generated, and the
following calculations are performed:

r 5 g k modp (X2.1)

s5 ~m – xr !k–1 modp (X2.2)

The signature is the pair (r, s). Note this signature is twice the
length ofp.

X2.2.2 To verify a signature, compute the digest of the
received messagem8. The signature is valid if:

gm8 5 yrr s modp (X2.3)

X2.3 The NIST Digital Signature Algorithm (DSA) was
designed by David Kravitz, who was then at NSA.g is a
generator of a multiplicative subgroup of a GF(p) of orderq,
whereq is a prime number which dividesp-1. The private key
x is between 2 andq-2, and the public keyy is computed as in
X2.2. DSA is described in ANSI X9.30.

X2.3.1 Signature generation uses the message digestm; k is
between 1 andq-1. The following calculations are performed:

r 5 ~gk mod p! mod q (X2.4)

r 5 ~m1 xr !k–1 modq (X2.5)

X2.3.2 Signature verification consists of checking that:

r 5 ~gmwyrw modp! modq, wherew 5 s–1 (X2.6)

E 2084 – 00

10

X2.4 DSA signatures may also be computed using the
group of points on an elliptic curve rather than the multiplica-
tive subgroup of orderq described in X2.3. This variant is
described in ANSI X9.62. The computations are as described in
Eq X2.4-X2.6. Operations map to elliptic curves as follows:

X2.4.1 The generatorg is a point on the curve.
X2.4.2 The subgroup modulusq maps to the order of the

generator point.
X2.4.3 Multiplication modulop maps to addition of points.
X2.4.4 Exponentiation maps to scalar multiplication of

points.
X2.4.5 Use of elliptic curves greatly reduces the size of the

numbers involved. For example, a 1024–bit key in DSA can be

replaced by a 155-bit key in ECDSA. This leads to savings in
computational requirements (although the underlying opera-
tions are more complex), as well as storage and bandwidth
requirements.

X2.5 The signature algorithms in 3.1.2-3.1.9 all provide the
same capabilities. Given that DSA is an ANSI and U.S.
government standard, it is recommended for general use.
ECDSA is recommended for those cases where storage and
bandwidth are limited (for example, smart cards). DSA is
patented, but the government has declared that it can be used
royalty-free.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org).

E 2084 – 00

11

